Holey fiber design for single-polarization single-mode guidance
نویسندگان
چکیده
منابع مشابه
Holey fiber design for single-polarization single-mode guidance.
We propose a holey fiber design to achieve single-polarization single-mode (SPSM) guidance. The photonic crystal fiber (PCF) has a triangular-lattice with elliptical airholes in the microstructured cladding and circular airholes in the core. The SPSM guidance can be obtained by designing the PCF structure such that the fundamental space-filling mode (FSM) of the core region is positioned betwee...
متن کاملMicrostructured optical fiber for single-polarization air guidance.
An air-core microstructured fiber design that supports a single-polarization, circularly symmetric nondegenerate mode is presented. The fiber design is modeled directly, and the microstructured cladding is analyzed by use of band diagrams to elucidate the mechanism through which polarization nondegeneracy is achieved.
متن کاملEndlessly single-mode holey fibers: the influence of core design.
In this paper we evaluate the cut-off properties of holey fibers (HFs) with a triangular lattice of air holes and the core formed by the removal of a single (HF1) or more air holes (HF3 and HF7). With the aid of finite-element simulations we determine the single-mode and multi-mode phases and also find the air hole diameters limiting the endlessly single-mode regime. From calculations of V and ...
متن کاملSingle-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications.
We report the fabrication of a large mode area tellurite holey fiber from an extruded preform, with a mode area of 3000microm(2). Robust single-mode guidance at 1.55microm was confirmed by both optical measurement and numerical simulation. The propagation loss was measured as 2.9dB/m at 1.55microm. A broad and flat supercontinuum from 0.9 to 2.5microm with 6mW output was obtained with a 9cm len...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Optics
سال: 2009
ISSN: 0003-6935,1539-4522
DOI: 10.1364/ao.48.004038